Berry Group

Quantum simulations and algorithms

Our research is in the areas of quantum information and quantum optics. In quantum information, we are performing research into the most efficient ways of simulating physical quantum systems on a quantum computer. Such simulations are a very promising application for quantum computers, because simulating quantum systems is extremely important in areas such as design of molecules, and it is natural for quantum computers to give exponential speedups.

Current Research Topics

  • Quantum simulation of molecules

  • Quantum simulation of crystals

  • Improved product formulae

  • Quantum algorithms for partial differential equations

  • Quantum phase estimation

Members

Alumni

Publications

  • P. C. S. Costa, D. An, Y. R. Sanders, Y. Su, R. Babbush, and D. W. Berry, “Optimal scaling quantum linear systems solver via discrete adiabatic theorem”, arXiv: 2111.08152 (2021).

  • Y. Su, D. W. Berry, N. Wiebe, N. Rubin, and R. Babbush, “Fault-tolerant quantum simulations of chemistry in first quantization”, PRX Quantum 2, 040332 (2021).

  • J. Lee, D. W. Berry, C. Gidney, W. J. Huggins, J. R. McClean, N. Wiebe, and R. Babbush, “Even more efficient quantum computations of chemistry through tensor hypercontraction”, PRX Quantum 2, 030305 (2021).

  • D. W. Berry, C. Gidney, M. Motta, J. R. McClean, and R. Babbush, “Qubitization of Arbitrary Basis Quantum Chemistry Leveraging Sparsity and Low Rank Factorization”, Quantum 3, 208 (2019).

  • R. Babbush, C. Gidney, D. W. Berry, N. Wiebe, J. McClean, A. Paler, A. Fowler, and H. Neven, “Encoding Electronic Spectra in Quantum Circuits with Linear T Complexity”, Physical Review X 8, 041015 (2018).

  • S. Daryanoosh, S. Slussarenko, D. W. Berry, H. M. Wiseman, and G. J. Pryde, “Experimental optical phase measurement at the exact Heisenberg limit”, Nature Communications 9, 4606 (2018).

  • D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and R. D. Somma, Simulating Hamiltonian dynamics with a truncated Taylor series , Physical Review Letters 114, 090502 (2015)

  • D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and R. D. Somma, Exponential improvement in precision for simulating sparse Hamiltonians, In Proceedings of the 46th Annual ACM Symposium on Theory of Computing, pages 283-292 (2014)

  • D. W. Berry, M. J. W. Hall, and H. M. Wiseman, Stochastic Heisenberg Limit: Optimal Estimation of a Fluctuating Phase, Physical Review Letters 111, 113601 (2013)

  • H. Yonezawa, D. Nakane, T. A. Wheatley, K. Iwasawa, S. Takeda, H. Arao, K. Ohki, K. Tsumura, D. W. Berry, T. C. Ralph, H. M. Wiseman, E. H. Huntington, and A. Furusawa, Quantum-enhanced optical-phase tracking, Science 337, 1514 (2012)

  • G. Y. Xiang, B. L. Higgins, D. W. Berry, H. M. Wiseman, and G. J. Pryde, Entanglement-enhanced measurement of a completely unknown phase, Nature Photonics 5, 43 (2011)

Previous
Previous

Brennen Group

Next
Next

Burgarth Group